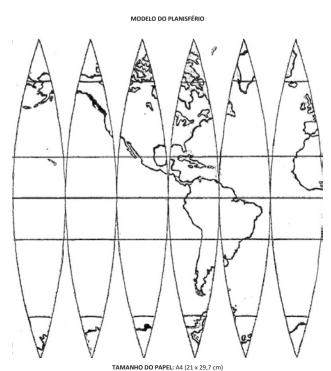


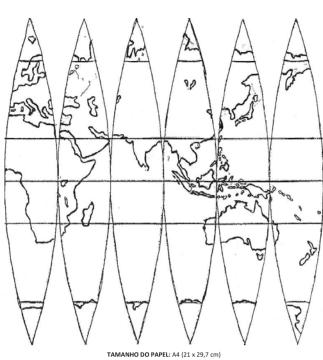
Unidade 1

Atividade interdisciplinar - Arte / Astronomia / Geografia

Que tal propor uma atividade lúdica aos estudantes que estão aprendendo sobre a forma e os movimentos da Terra?


Nossa proposta é montar um globo terrestre.

Para isso, providencie o seguinte material, para cada estudante:


- uma bola de isopor com um diâmetro de 10,0 cm;
- um molde impresso em papel A4 a partir do seguinte link: https://drive.google.com/file/d/0BwbHNRlqL_m-RThtVHdyYTlrd1U/view Acesso em: 12 maio 2023.
- cola branca escolar;
- lápis de cor ou giz de cera;
- alfinetes ou palitos de dente;

Os modelos de planisférios que você irá imprimir são os seguintes:

Parte 1

TAMANHO DO PLANISFÉRIO: 39,0 x 20,0 cm (bola de isopor de 125 mm) – Parte 1 – Largura 19,5 cm

MODELO DO PLANISFÉRIO

TAMANHO DO PLANISFÉRIO: 39,0 x 20,0 cm (bola de isopor de 125 mm) – Parte 2 – Largura 19,5 cm

Oriente-os a começar pintando os oceanos de azul e os continentes de diferentes cores (a escolha é individual). Quando a pintura estiver concluída, peça que recortem a parte branca do papel em volta do modelo.

Solicite que numerem os gomos ou fatias na parte de trás, antes de separá-los, e que marquem os polos Norte e Sul da Terra, na bola de isopor, utilizando os alfinetes ou palitos de dente.

Em seguida, peça que colem os gomos, ou fatias, centralizando-os, um a um, na representação da linha do Equador, colando primeiro o meio e depois os polos, na sequência numerada.

Explique que trabalhando com calma e capricho, no final, eles terão um ótimo globo terrestre para planejar as viagens que farão no futuro!

Unidade 2

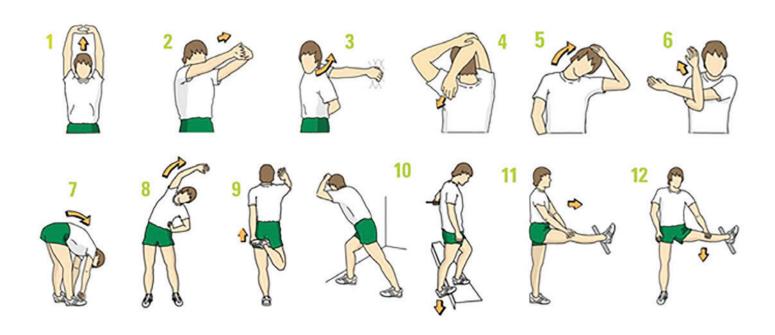
Atividade interdisciplinar - Biologia / Educação Física

Que tal levar a aula de Ciências para a quadra de esportes?

Esta atividade interdisciplinar permite aos estudantes compreender a relação entre o sistema nervoso, o sistema locomotor e a prática de atividade física. Além disso, eles têm a oportunidade de vivenciar na prática como esses sistemas funcionam e refletir sobre a importância do movimento para a saúde e o desempenho esportivo.

1. Introdução teórica

Inicie a atividade com uma breve explicação sobre o sistema nervoso e o sistema locomotor. Discuta como esses sistemas trabalham em conjunto para permitir o movimento do corpo.


2. Apresentação dos estudantes

Em seguida, divida os estudantes em grupos e peça a cada grupo que prepare uma demonstração prática relacionada ao sistema nervoso e ao sistema locomotor. Eles podem escolher um aspecto específico para abordar, como os reflexos, a coordenação motora ou a força muscular.

3. Atividade prática

Planeje antecipadamente com o professor ou a professora de Educação Física de levar os estudantes para a quadra de esportes a fim de realizarem uma série de exercícios físicos, como alongamentos, flexões, corridas, saltos, entre outros, envolvendo diferentes partes do corpo.

Exercícios de alongamento

Diferentes atividades

Oriente os estudantes para que, durante a realização dos exercícios, observem como o sistema nervoso coordena os movimentos e como o sistema locomotor responde aos estímulos.

4. Conscientização e registro

Após realizarem os exercícios, de volta à sala de aula ou na própria quadra de esportes, os estudantes devem fazer anotações sobre as sensações que experimentaram em diferentes partes do corpo. Eles devem refletir sobre como o sistema nervoso percebe e responde aos estímulos, além de como o sistema locomotor permite a realização dos movimentos.

5. Discussões em grupo

Em seguida, forme grupos para que possam discutir e compartilhar com os colegas as impressões que tiveram durante a atividade, sobre as conexões entre o sistema nervoso, o sistema locomotor e a prática de atividade física. Incentive-os a pensarem nas vantagens de uma boa coordenação motora e força muscular para o desempenho esportivo.

6. Conclusão e relatório

Solicite aos estudantes que elaborem um relatório ou uma pequena apresentação sobre a importância do sistema nervoso e do sistema locomotor, não apenas na prática de atividade física, mas também nas atividades diárias. Eles podem incluir suas observações pessoais, pesquisas adicionais e exemplos de atletas que se destacam em esportes específicos devido à coordenação e às habilidades motoras.

Unidade 3

Atividade interdisciplinar - Química / Culinária / Português

Que tal propor aos estudantes a criação de um livro de receitas temático?

Esta atividade envolverá os estudantes em pesquisa, experimentação prática, escrita, organização e apresentação, integrando conhecimentos de Química, culinária e Língua Portuguesa de forma interdisciplinar e criativa.

1. Pesquisa

Peça aos estudantes para pesquisarem sobre ingredientes culinários utilizados nas receitas típicas da região onde moram, incluindo suas propriedades químicas e como interagem durante o processo de cozimento. Eles também podem investigar a origem histórica das receitas selecionadas.

2. Seleção de receitas

- Com base na pesquisa, os estudantes devem selecionar as receitas que mais lhes agradem e indicar as reações químicas ou transformações que ocorrem durante o preparo.
- Por exemplo: durante o preparo de uma receita culinária, é possível observar diversos tipos de transformações químicas, tais como:
- reações de fermentação de carboidratos: transformação de carboidratos em dióxido de carbono e álcool, ocorrendo na produção de pães, bolos, cerveja, entre outros.
- reações de fermentação láctica: conversão de açúcares presentes no leite (lactose) em ácido láctico por meio da ação de bactérias, como na produção de iogurte e queijos.

- reações de caramelização de carboidratos: transformação de açúcares em caramelos, resultando em mudança de cor e sabor.
- reações de caramelização de proteínas: transformação de proteínas em produtos com sabor e cor característicos, como a formação de uma crosta dourada em carnes grelhadas.
- reações de oxidação: oxidação de compostos presentes nos alimentos, causando mudanças de cor e sabor, como quando uma maçã cortada fica marrom.
- reações de Maillard: entre açúcares e aminoácidos durante o cozimento, resultando em sabores e aromas complexos, como na formação de crostas douradas em pães, biscoitos e carnes grelhadas.
- hidrólise: quebra de moléculas complexas em compostos mais simples por meio da adição de água, como a hidrólise de amido em açúcares durante o cozimento.
- alteração do pH dos alimentos por meio da adição de ácidos, como suco de limão ou vinagre, resultando em mudanças de sabor e textura.
 - Oriente os estudantes a não confundir o processos químicos com os físicos, como:
- emulsificação: mistura de substâncias imiscíveis, como óleo e água, resultando em uma emulsão estável, como maionese ou molhos cremosos.
 - A emulsificação é uma transformação física, não uma transformação química. Na emulsificação, ocorre a mistura de duas substâncias imiscíveis, como óleo e água, formando uma emulsão estável. Isso é possível devido à ação de agentes emulsificantes, como lecitina ou proteínas, que reduzem a tensão superficial entre as duas fases líquidas e ajudam a dispersar uma fase na outra. Essa mistura resultante pode parecer homogênea, mas não envolve a formação de novas substâncias químicas.
- reações de gelificação: transformação de um líquido em gel por meio do uso de agentes gelificantes, como a gelatina ou a pectina.
 - A transformação de um líquido em gel por meio do uso de agentes gelificantes, como a gelatina ou a pectina, é uma transformação física. Nesse processo, ocorre uma reorganização das moléculas presentes no líquido, formando uma estrutura tridimensional, conhecida como gel. Essa transformação é reversível, pois o gel pode voltar ao estado líquido quando aquecido ou submetido a determinadas condições. Não há formação de novas substâncias químicas durante essa transformação, apenas uma alteração na estrutura física do líquido.
 - Oriente os estudantes a observarem como os alimentos se transformam por meio do calor, em processos como como assar, ferver, grelhar, entre outros. Essas transformações podem ser tanto químicas como físicas.
 - É possível utilizar, como exemplo, o cozimento de um ovo , um alimento relativamente barato e nutritivo, que permite visualizar transformações químicas como:
- coagulação das proteínas: as proteínas do ovo, como a albumina presente em abundância na clara, sofrem uma mudança em sua estrutura quando expostas ao calor, envolvendo quebras e rearranjos de ligações químicas, resultando na formação de uma rede tridimensional estável. Isso ocorre tanto na clara quanto na gema do ovo, tornando-as sólidas.
- reações de Maillard: durante o cozimento, ocorrem reações químicas entre os açúcares e os aminoácidos presentes no ovo. Essas reações de Maillard produzem compostos responsáveis pela cor e pelos sabores característicos do ovo cozido.
- reações de oxidação: o cozimento do ovo também pode levar a reações de oxidação, resultando em mudanças na cor da gema, como a formação do anel de sulfeto de ferro (verde acinzentado) ao redor da gema, quando o ovo passa por um cozimento mais prolongado.

Nesse processo, também ocorrem transformações físicas, como:

- mudança de estado físico: o ovo passa de um estado líquido para um estado sólido durante o cozimento, com a clara e a gema coagulando e se tornando mais firmes.
- Expansão: Durante o cozimento, ocorre expansão devido à formação de vapor de água dentro do ovo. Isso pode levar à quebra da casca ou à formação de rachaduras.

3. Elaboração das receitas

Caso seja possível utilizar a cantina da escola para essa atividade, os estudantes podem preparar alguma receita pré-selecionada pelo professor, documentando o processo passo a passo e registrando observações sobre as mudanças físicas e químicas que ocorrem durante o preparo.

Caso isso não seja possível, verifique previamente com as famílias se há algum adulto disponível, que possa supervisionar o estudante e trabalhar junto com ele no preparo de uma receita simples que ele poderia levar depois para a escola.

Se essa segunda opção for viável, é possível marcar uma pequena apresentação para cada um contar a história da receita que escolheu e compartilhar as transformações que observou durante o preparo.

No final, todos poderiam provar das receitas uns dos outros, em um piquenique comunitário.

4. Descrição das receitas

Com a ajuda do professor de Língua Portuguesa, os estudantes podem elaborar descrições detalhadas das receitas, indicando os ingredientes utilizados e explicando os procedimentos, passo a passo, com o propósito de criar um caderno ou livro de receitas do grupo.

5. Criação do livro

O livro de receitas da classe deve conter, além da descrição detalhada das receitas escolhidas, informações sobre as propriedades químicas dos ingredientes, as transformações observadas, bem como informações históricas e curiosidades relacionadas a cada prato.

6. Ilustrações e fotografias

Os estudantes podem criar ilustrações ou fotografar cada etapa das receitas para acompanhar as descrições no livro.

7. Revisão e edição

O livro de receitas deve ser revisado pelos estudantes, focando na linguagem, na organização e na correção gramatical.

8. Formato

O livro pode ser feito no formato de um caderno e ficar na biblioteca da escola para consulta ou, se houver recursos digitais, pode ser eletrônico e ficar hospedado no site da escola, disponível para download. Assim, outros estudantes, professores e pais terão acesso às receitas e às informações químicas e linguísticas que ele traz